

Analyse des cartes de courant de surface à l'aide de radar HF côtiers

P.-A. Machard, F. Dumas et G. Sicot

La zone littorale

Zone à forts enjeux

- Enjeux économiques
- Enjeux écologiques
- Pour la sécurité maritime

Zone complexe

- Influence conjointe de la marée, des vagues, du vent et de la bathymétrie
- Besoin de mesures
 - Bouées
 - > ADCP
 - Satellites
 - ➢ Radar HF

La zone d'étude: la mer d'Iroise

Radars HF en mer d'Iroise (source: SHOM)

Réseau de réception (source: SHOM)

SOMMAIRE

- ➢ I) Le principe de la mesure du courant de surface par radar HF
- ➢ II) Le radar Haute-Fréquence WERA
 - a) L'installation WERA
 - b) Caractéristiques du WERA
 - c) Traitement numérique des données radar
 - d) Les limites du Beamforming
- > III) Comment analyser les cartes de courant ?
 - a) Méthode
 - b) Reconstruction de spectres Doppler
- IV) Quelques résultats

SOMMAIRE

- ➢ I) Le principe de la mesure du courant de surface par radar HF
- ➢ II) Le radar Haute-Fréquence WERA
 - a) L'installation WERA
 - b) Caractéristiques du WERA
 - c) Traitement numérique des données radar
 - d) Les limites du Beamforming
- > III) Comment analyser les cartes de courant ?
 - a) Méthode
 - b) Reconstruction de spectres Doppler
- IV) Quelques résultats

Le principe de la mesure radar HF

Phénomène de Bragg : Les rétrodiffuseurs principaux sont les vagues de Bragg de longueur d'onde λ/2

Source: oceania.research.um.edu.mt

Le principe de la mesure radar HF

- Un spectre Doppler => une mesure de vitesse radiale
- Cas d'étalement du pic de Bragg ?

SOMMAIRE

- ➢ I) Le principe de la mesure du courant de surface par radar HF
- II) Le radar Haute-Fréquence WERA
 - a) L'installation WERA
 - b) Caractéristiques du WERA
 - c) Traitement numérique des données radar
 - d) Les limites du Beamforming
- > III) Comment analyser les cartes de courant ?
 - a) Méthode
 - b) Reconstruction de spectres Doppler
- IV) Quelques résultats

Le site

Le site

Le diagramme d'émission

L'installation WERA

Le diagramme d'émission

Un radar FMCW

- FMCW : Frequency-Modulated Continuous-Wave
- Le WERA émet des « chirps » : signal pseudo-périodique modulé en fréquence autour d'une fréquence porteuse

- Les chirps couvrent une bande passante B (B = 100 kHz)
- Un radar FMCW facilite la résolution en distance !

Les antennes de réception

 Le réseau est linéaire, le plus proche possible de la mer pour limiter l'atténuation du signal dû à la terre

Les antennes de réception

- Le réseau est linéaire, le plus proche possible de la mer pour limiter l'atténuation du signal dû à la terre
- Les antennes réceptionnent les signaux électromagnétiques provenant de toutes les directions

Les antennes de réception

- Le réseau est linéaire, le plus proche possible de la mer pour limiter l'atténuation du signal dû à la terre
- Les antennes réceptionnent les signaux électromagnétiques provenant de toutes les directions
- On peut séparer les sources suivant leur azimut : en effectuant une formation de voies, aussi appelée Beamforming

Traitement numérique des données radar

Le Beamforming

- Combinaison d'antennes nondirectionnelles pour former une grande antenne directionnelle
- On dépointe l'« antenne » dans la direction de la source du signal, par déphasage

12 /

Traitement numérique des données radar

Le Beamforming

- Combinaison d'antennes nondirectionnelles pour former une grande antenne directionnelle
- On dépointe l'« antenne » dans la direction de la source du signal, par déphasage

() ()
Avec le décalage de phase φ dépendant de l'angle de dépointage θ

Les diagrammes de réception

Pour chaque dépointage, on obtient un diagramme de réception

Traitement numérique des données radar

Le Beamforming

- Combinaison d'antennes nondirectionnelles pour former une grande antenne directionnelle
- On dépointe l'« antenne » dans la direction de la source du signal, par déphasage
- Pour réduire les lobes secondaires, on applique une fenêtre d'apodisation :
- ≻ () ()

Avec le décalage de phase ϕ dépendant de l'angle de dépointage θ

Application d'une fenêtre d'apodisation

Réduction des lobes secondaires, mais étalement du diagramme

Traitement numérique des données radar

Les limites du Beamforming

- Estimation du courant pour chaque spectre
- Le courant estimé est issu d'une « moyenne » sur une surface

SOMMAIRE

- I) Le principe de la mesure du courant de surface par radar Haute-Fréquence
- ➢ II) Le radar Haute-Fréquence WERA
 - a) L'installation WERA
 - b) Caractéristiques du WERA
 - c) Traitement numérique des données radar
 - d) Les limites du Beamforming
- > III) Comment analyser les cartes de courant ?
 - a) Méthode
 - b) Reconstruction de spectres Doppler
- IV) Quelques résultats

- Données radar
- > Données courants cartésiens tirées d'une carte réalisée à partir des données radar

19 /

- Données radar
- > Données courants cartésiens tirées d'une carte réalisée à partir des données radar

La démarche

- Données radar => Obtention de spectres Doppler à partir du Beamforming
- Données courants cartésiens => Calculer les courants radiaux associés et reconstruire les pics de 1^{er} ordre des spectres Doppler en chaque maille à l'aide de la méthode de Walsh et al. (2011)[*]
- Définir une mesure d'erreur

- Données radar
- > Données courants cartésiens tirées d'une carte réalisée à partir des données radar

La démarche

- Données radar => Obtention de spectres Doppler à partir du Beamforming
- Données courants cartésiens => Calculer les courants radiaux associés et reconstruire les pics de 1^{er} ordre des spectres Doppler en chaque maille à l'aide de la méthode de Walsh et al. (2011)[*]
- Définir une mesure d'erreur

- Données radar
- > Données courants cartésiens tirées d'une carte réalisée à partir des données radar

La démarche

- Données radar => Obtention de spectres Doppler à partir du Beamforming
- Données courants cartésiens => Calculer les courants radiaux associés et reconstruire les pics de 1^{er} ordre des spectres Doppler en chaque maille à l'aide de la méthode de Walsh et al. (2011)[*]
- Définir une mesure d'erreur

Les cartes de courants cartésiens

 Connaissance des composantes U et V du courant

Les cartes de courants cartésiens

 Connaissance des composantes U et V du courant

La méthode

- Walsh et al. (2011)[*] ont proposé un modèle de reconstruction du spectre Doppler d'une maille, dépendant de la fréquence d'émission du radar
 - > Ce modèle tient compte de la forme d'onde du radar WERA (FMCW)
 - > On ne s'intéressera qu'au premier ordre

La méthode

- Walsh et al. (2011)[*] ont proposé un modèle de reconstruction du spectre Doppler d'une maille, dépendant de la fréquence d'émission du radar
 - Ce modèle tient compte de la forme d'onde du radar WERA (FMCW)
 - > On ne s'intéressera qu'au premier ordre
- Contrairement au modèle de Walsh et al. (2011)[*], le spectre directionnel de vagues de Bragg n'a pas été pris en compte pour la reconstruction
- A la reconstruction du spectre a été appliqué un décalage doppler supplémentaire lié au courant radial

Les 1^{ers} ordres estimés par Walsh et al. (2011)

➤ Convention mathématique : vitesse radiale positive ⇒ courant portant dans la direction opposée au radar

22

Simulation d'un Beamforming

- Une donnée radar située à une distance et un azimut donnés n'intègre pas uniquement de l'information provenant de cette distance et cet azimut
- Simulation d'une formation de voies :

Avec :

le gain d'émission dans l'azimut

le gain de reception dans la direction pour un dépointage de l'antenne de réception à l'azimut

le spectre issu du modèle de Walsh et al. (2011)[*] à un angle donné et la distance d

Simulation d'un Beamforming

Simulation d'un Beamforming

Les 1^{ers} ordres reconstruits

On obtient ainsi des 1^{ers} ordres de spectres Doppler reconstruits faisant apparaître ou non un étalement suivant la variabilité du courant dans une maille 25

Un calcul d'aire

SOMMAIRE

- I) Le principe de la mesure du courant de surface par radar Haute-Fréquence
- ➢ II) Le radar Haute-Fréquence WERA
 - a) L'installation WERA
 - b) Caractéristiques du WERA
 - c) Traitement numérique des données radar
 - d) Les limites du Beamforming
- III) Comment analyser les cartes de courant ?
 - a) Méthode
 - b) Reconstruction de spectres Doppler
- IV) Quelques résultats

Résultat d'un modèle numérique (MARS2D, previmer.org)

Résultat d'un modèle numérique (MARS2D, previmer.org)

CONCLUSION

- Analyse des cartes de courants de surface à partir des mesures issues des radars HF
 - Premiers résultats encourageants
 - > Evaluer la répétitivité des résultats sur plusieurs cycles de marée
- Etude de cartes de courants issues d'autres sources
 - Autres méthodes d'estimation
 - Modèle numérique
- Construction de cartes de courants par optimisation

Merci de votre attention