

Analyse des cartes de courant de surface à l'aide de radar HF côtiers

P.-A. Machard, F. Dumas et G. Sicot

La zone littorale

Zone à forts enjeux

- Enjeux économiques
- Enjeux écologiques
- Pour la sécurité maritime

Zone complexe

- Influence conjointe de la marée, des vagues, du vent et de la bathymétrie
- Besoin de mesures
 - Bouées
 - > ADCP
 - Satellites
 - Radar HF

La zone d'étude: la mer d'Iroise

Radars HF en mer d'Iroise (source: SHOM)

Réseau de réception (source: SHOM)

SOMMAIRE

- > I) Le principe de la mesure du courant de surface par radar HF
- II) Le radar Haute-Fréquence WERA
 - a) L'installation WERA
 - b) Caractéristiques du WERA
 - c) Traitement numérique des données radar
 - d) Les limites du Beamforming
- ➤ III) Comment analyser les cartes de courant ?
 - a) Méthode
 - b) Reconstruction de spectres Doppler
- > IV) Quelques résultats

SOMMAIRE

- > I) Le principe de la mesure du courant de surface par radar HF
- II) Le radar Haute-Fréquence WERA
 - a) L'installation WERA
 - b) Caractéristiques du WERA
 - c) Traitement numérique des données radar
 - d) Les limites du Beamforming
- ➤ III) Comment analyser les cartes de courant ?
 - a) Méthode
 - b) Reconstruction de spectres Doppler
- > IV) Quelques résultats

ightharpoonup Phénomène de Bragg : Les rétrodiffuseurs principaux sont les vagues de Bragg de longueur d'onde $\lambda/2$

 $ightharpoonup F = 12 \text{ Mhz} = > \lambda = 25 \text{ m}$

Source: oceania.research.um.edu.mt

➤ Effet Doppler permet de mesurer le courant

fB est la fréquence de Bragg

$$f_B = \sqrt{-}$$

= 0,353 Hz si F = 12 Mhz

Effet Doppler permet de mesurer le courant

fB est la fréquence de Bragg

$$f_B = \sqrt{-}$$

= 0,353 Hz si F = 12 Mhz

$$\Delta f = --- => = -- \Delta f > 0 => Courant portant vers le radar$$
 $\Delta f < 0 => Courant portant dans la$

direction opposée au radar

Effet Doppler permet de mesurer le courant

fB est la fréquence de Bragg

$$f_B = \sqrt{-}$$

= 0,353 Hz si F = 12 Mhz

$$\Delta f = --- => = -- \Delta f > 0 => Courant portant vers le radar$$
 $\Delta f < 0 => Courant portant dans la$

direction opposée au radar

- Un spectre Doppler => une mesure de vitesse radiale
- Cas d'étalement du pic de Bragg ?

SOMMAIRE

- > I) Le principe de la mesure du courant de surface par radar HF
- ➤ II) Le radar Haute-Fréquence WERA
 - a) L'installation WERA
 - b) Caractéristiques du WERA
 - c) Traitement numérique des données radar
 - d) Les limites du Beamforming
- ➤ III) Comment analyser les cartes de courant ?
 - a) Méthode
 - b) Reconstruction de spectres Doppler
- > IV) Quelques résultats

L'installation WERA

Le site

L'installation WERA

Le site

L'installation WERA

Le site

Le diagramme d'émission

Le diagramme d'émission

Les caractéristiques du WERA

Un radar FMCW

- > FMCW: Frequency-Modulated Continuous-Wave
- Le WERA émet des « chirps » : signal pseudo-périodique modulé en fréquence autour d'une fréquence porteuse

- ➤ Les chirps couvrent une bande passante B (B = 100 kHz)
- Un radar FMCW facilite la résolution en distance!

Les antennes de réception

Le réseau est linéaire, le plus proche possible de la mer pour limiter l'atténuation du signal dû à la terre

Les antennes de réception

- Le réseau est linéaire, le plus proche possible de la mer pour limiter l'atténuation du signal dû à la terre
- Les antennes réceptionnent les signaux électromagnétiques provenant de toutes les directions

Les antennes de réception

- Le réseau est linéaire, le plus proche possible de la mer pour limiter l'atténuation du signal dû à la terre
- Les antennes réceptionnent les signaux électromagnétiques provenant de toutes les directions
- On peut séparer les sources suivant leur azimut : en effectuant une formation de voies, aussi appelée Beamforming

Le Beamforming

- Combinaison d'antennes nondirectionnelles pour former une grande antenne directionnelle
- On dépointe l'« antenne » dans la direction de la source du signal, par déphasage

Le Beamforming

- Combinaison d'antennes nondirectionnelles pour former une grande antenne directionnelle
- On dépointe l'« antenne » dans la direction de la source du signal, par déphasage
- > ()

Avec le décalage de phase ϕ dépendant de l'angle de dépointage θ

Les diagrammes de réception

Pour chaque dépointage, on obtient un diagramme de réception

Le Beamforming

- Combinaison d'antennes nondirectionnelles pour former une grande antenne directionnelle
- On dépointe l'« antenne » dans la direction de la source du signal, par déphasage
- ➤ Pour réduire les lobes secondaires, on applique une fenêtre d'apodisation :
- > ()

Avec le décalage de phase ϕ dépendant de l'angle de dépointage θ

Application d'une fenêtre d'apodisation

Réduction des lobes secondaires, mais étalement du diagramme

Les limites du Beamforming

- Estimation du courant pour chaque spectre
- Le courant estimé est issu d'une « moyenne » sur une surface

SOMMAIRE

- ➤ I) Le principe de la mesure du courant de surface par radar Haute-Fréquence
- ➤ II) Le radar Haute-Fréquence WERA
 - a) L'installation WERA
 - b) Caractéristiques du WERA
 - c) Traitement numérique des données radar
 - d) Les limites du Beamforming
- ➤ III) Comment analyser les cartes de courant ?
 - a) Méthode
 - b) Reconstruction de spectres Doppler
- > IV) Quelques résultats

Comment analyser les cartes de courant?

De quelles données dispose-t-on?

- Données radar
- Données courants cartésiens tirées d'une carte réalisée à partir des données radar

Comment analyser les cartes de courant ?

De quelles données dispose-t-on?

- Données radar
- > Données courants cartésiens tirées d'une carte réalisée à partir des données radar

La démarche

- Données radar => Obtention de spectres Doppler à partir du Beamforming
- ➤ Données courants cartésiens => Calculer les courants radiaux associés et reconstruire les pics de 1^{er} ordre des spectres Doppler en chaque maille à l'aide de la méthode de Walsh et al. (2011)[*]
- Définir une mesure d'erreur

Comment analyser les cartes de courant ?

De quelles données dispose-t-on?

- Données radar
- > Données courants cartésiens tirées d'une carte réalisée à partir des données radar

La démarche

- > Données radar => Obtention de spectres Doppler à partir du Beamforming
- ➤ Données courants cartésiens => Calculer les courants radiaux associés et reconstruire les pics de 1^{er} ordre des spectres Doppler en chaque maille à l'aide de la méthode de Walsh et al. (2011)[*]
- Définir une mesure d'erreur

Comment analyser les cartes de courant ?

De quelles données dispose-t-on?

- Données radar
- > Données courants cartésiens tirées d'une carte réalisée à partir des données radar

La démarche

- > Données radar => Obtention de spectres Doppler à partir du Beamforming
- ➤ Données courants cartésiens => Calculer les courants radiaux associés et reconstruire les pics de 1^{er} ordre des spectres Doppler en chaque maille à l'aide de la méthode de Walsh et al. (2011)[*]
- Définir une mesure d'erreur

Reconstruction de spectres Doppler

Les cartes de courants cartésiens

Connaissance des composantesU et V du courant

Reconstruction de spectres Doppler

Les cartes de courants cartésiens

Connaissance des composantesU et V du courant

Reconstruction de spectres Doppler

La méthode

- ➤ Walsh et al. (2011)[*] ont proposé un modèle de reconstruction du spectre Doppler d'une maille, dépendant de la fréquence d'émission du radar
 - Ce modèle tient compte de la forme d'onde du radar WERA (FMCW)
 - On ne s'intéressera qu'au premier ordre

La méthode

- ➤ Walsh et al. (2011)[*] ont proposé un modèle de reconstruction du spectre Doppler d'une maille, dépendant de la fréquence d'émission du radar
 - Ce modèle tient compte de la forme d'onde du radar WERA (FMCW)
 - On ne s'intéressera qu'au premier ordre
- ➤ Contrairement au modèle de Walsh et al. (2011)[*], le spectre directionnel de vagues de Bragg n'a pas été pris en compte pour la reconstruction
- A la reconstruction du spectre a été appliqué un décalage doppler supplémentaire lié au courant radial

Les 1^{ers} ordres estimés par Walsh et al. (2011)

➤ Convention mathématique : vitesse radiale positive ⇒ courant portant dans la direction opposée au radar

Simulation d'un Beamforming

- Une donnée radar située à une distance et un azimut donnés n'intègre pas uniquement de l'information provenant de cette distance et cet azimut
- > Simulation d'une formation de voies :

Avec:

le gain d'émission dans l'azimut

le gain de reception dans la direction pour un dépointage de l'antenne de réception à l'azimut

le spectre issu du modèle de Walsh et al. (2011)[*] à un angle donné et la distance d

[*] J. WALSH, J. ZHANG, E. W. GILL, *High-Frequency Radar Cross Section of the Ocean Surface for an FMCW Waveform*, IEEE Journal of Oceanic Engineering, 36(4), 2011, pp. 615-626

Simulation d'un Beamforming

[]

Simulation d'un Beamforming

Les 1ers ordres reconstruits

On obtient ainsi des 1^{ers} ordres de spectres Doppler reconstruits faisant apparaître ou non un étalement suivant la variabilité du courant dans une maille

Mesure pour l'analyse

Un calcul d'aire

SOMMAIRE

- I) Le principe de la mesure du courant de surface par radar Haute-Fréquence
- ➤ II) Le radar Haute-Fréquence WERA
 - a) L'installation WERA
 - b) Caractéristiques du WERA
 - c) Traitement numérique des données radar
 - d) Les limites du Beamforming
- III) Comment analyser les cartes de courant ?
 - a) Méthode
 - b) Reconstruction de spectres Doppler
- > IV) Quelques résultats

Résultat d'un modèle numérique (MARS2D, previmer.org)

Aire de recouvrement des spectres

Courants estimés par radar HF

Aire disjointe des spectres

Résultat d'un modèle numérique (MARS2D, previmer.org)

Aire de recouvrement des spectres

Courants estimés par radar HF

Aire disjointe des spectres

Résultat d'un modèle numérique (MARS2D, previmer.org)

Aire de recouvrement des spectres

Courants estimés par radar HF

Aire disjointe des spectres

Résultat d'un modèle numérique (MARS2D, previmer.org)

Aire de recouvrement des spectres

Courants estimés par radar HF

Aire disjointe des spectres

Résultat d'un modèle numérique (MARS2D, previmer.org)

Aire de recouvrement des spectres

Courants estimés par radar HF

Aire disjointe des spectres

CONCLUSION

- Analyse des cartes de courants de surface à partir des mesures issues des radars HF
 - Premiers résultats encourageants
 - Evaluer la répétitivité des résultats sur plusieurs cycles de marée
- Etude de cartes de courants issues d'autres sources
 - Autres méthodes d'estimation
 - Modèle numérique
- Construction de cartes de courants par optimisation

Merci de votre attention