

 J_{Ω}

THE FRENCH AEROSPACE LAB

www.onera.fr

GREMLIT

Ja

Gradiomètre électrostatique planaire et sa plateforme contrôlée dédiés pour la géodésie aérienne

> CNFG2 2016, Brest, 16/11/2016 Françoise Liorzou, Bernard Foulon, Bruno Christophe <u>Vincent Lebat</u> - vincent.lebat@onera.fr

CHAMP, GRACE, GOCE, MICROSCOPE, GFO...

ONERA, world leader in ultra-sensitive space accelerometer

Accelerometer for microgravity NASA – Missions Microgravity Space Laboratory-1 – April & July 1997 ESA – Mission Life and Microgravity Science – July 1996

CACTUS Accelerometre – 1975– 10⁻⁸ m/s²/Hz^{1/2}

Improvement of geoid

FRENCH AFROSPACE LA

4 GREMLIT – CNFG2 2016 - Brest

GRADIO inheritage : drag compensation + gradiometer

5

Motivation : Airborne gradiometry

Gradiometer versus Gravimeter ?

- Increase in spatial resolution
- High resolution data
- Prospecting and imaging where seismic methods are difficult to operate

Needs for coastal areas ? Knowledge of the gravity field and geoid in coastal areas is necessary for :

- current circulation from altimetry
- exploitation of natural resources
- passive navigation

Gravity measurements vs gradiometry measurements

GREMLIT (« GRadiomètre Electrostatique pour Mesures en zone LITtorale »)

→ Airborne gravity gradiometer instrument to cover land/sea transition areas with uniform precision, and suitable spatial resolution (10 km scale)

→ Onera internal Project founding

Main principle of the GREMLIT instrument

4 planar accelerometers on a square configuration

- Vertical axis levitation (max acc 10 m/s² ± 10) Planar configuration especially well suited to sustain the proof-mass levitation in the Earth's gravity field
- Horizontal axes linearity sensitive axes (max acc 10⁻⁴ m/s²) intrinsic linearity of position sensing and electrostatic actuation, which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth
- **Compactness** Design with reduced level arms ensures excellent dimensional stability, good thermal homogeneity

The GREMLIT instrument is taking advantage of GOCE return of experience and of technologies, formerly developed by ONERA for the GRACE and GOCE space instruments

$$\Gamma_{\mathbf{X}\mathbf{X}}(O) = \frac{1}{2} \cdot \left(\frac{a_x(O_3) - a_x(O_4)}{L} + \frac{a_x(O_2) - a_x(O_1)}{L} \right)$$

$$\Gamma_{\mathbf{yy}}(O) = \frac{1}{2} \cdot \left(\frac{a_y(O_1) - a_y(O_4)}{L} + \frac{a_y(O_2) - a_y(O_3)}{L} \right)$$

$$\Gamma_{xy}(O) = \frac{1}{2} \cdot \left(\frac{a_y(O_3) - a_y(O_4)}{L} + \frac{a_y(O_2) - a_y(O_1)}{L} \right)$$

$$\Gamma_{yx}(O) = \frac{1}{2} \cdot \left(\frac{a_x(O_1) - a_x(O_4)}{L} + \frac{a_x(O_2) - a_x(O_3)}{L} \right)$$

Stabilized platform is necessary

- Stabilized platform is essential
 - To not sature the sensitive axes of the instrument (10⁻⁴ m/s²) due to the flight perturbation
 - \rightarrow orientation of the vector acceleration normal to the vertical axis of the instrument (10 m/s²)
 - To achieve the global performance

 \rightarrow High accuracy of the equipment on the platform(Gyro, instrument orientation wrt IMU), necessary for the global measurement

Performance evaluation : simulation principle

9

Performance evaluation : simulation results

Noise-free gradients in the geodetic frame

Error of the horizontal gravitational gradients after gyro biases calibration by an ordinary least squares regression over the full time series

in instrumental frame

in geodetic frame

	std (E)	max . (E)
$\delta \mathbf{V}_{\mathbf{X}\mathbf{X}}$	1.103	16.9
$\delta \mathbf{V_{xy}}$	0.84	14.2
$\delta \mathbf{V_{yy}}$	1.86	26
δV_{zz}	2.28	30.6

	std (E)	max . (E)
ΔV_{xx}	2.7	41.3
ΔV_{xy}	1.9	34.6
ΔV_{yy}	2.57	41.3
ΔV_{zz}	3.8	44

Correlation matrix of the errors of the 3 gradients in instrumental frame in geodetic frame

	δV_{xx}	δV_{xy}	δV_{yy}		ΔV_{xx}	ΔV_{xy}	ΔV_{yy}
δV_{xx}	1			ΔV_{xx}	1		
δV_{xy}	-0.013	1		ΔV_{xy}	0.067	1	
δV_{yy}	0.126	0.154	1	ΔV_{yy}	0.043	0.1	1

Design of the stabilized platform

- Rotation controlled with high resolution linear actuator (0,1 μ m) with handle, to reach the target resolution for the angle of 10⁻⁶ rad (<10⁻⁵ rad are needed in regard of the max acc 10⁻⁴ m/s²)
- High resolution bearing
- Specific design to suppress clearance in the mechanic connections
- 3 gyrometers < 10⁻⁵ rad.s⁻¹
- The orientation of the platform is controlled directly with the common mode of GREMLIT

Thermomechanical stability of the platform is not a blocking point

Nominal effort of the actuator is over of the needs, to not be limited by mechanical frictions (hysteresis)

- Measurement of the orientation of the platform with interferometer directly on the instrument (position between GREMLIT and IMU)
- First simple controlled laws simulated show the nice behavior of the platform

Simulation - Real angle of the platform

Progress of the Gradiometer development 1/2

1^{rst} Internal Project founding from 2012 to 2015

- Confirmation of the feasibility and performance of the planar gradiometer
 - PhD grant from ONERA (2015)

Development of a single axis gradiometer

- To demonstrate the viability of the measurement
- All parts are manufactured, the integration is scheduled in October 2016
- First tests are scheduled before the end of 2016 (initially scheduled in 2015, but delayed due to the availability of internal specific manufacturing bench)

• Study of the feasibility of the stabilized platform, essential to achieve the performance

Confirmation of the feasibility to achieve the performance of the gradiometer

1 axis gradiometer Simple 1 axis platform

Progress of the Gradiometer development 2/2

2nd Internal Project founding from 2016 to 2018

- \cdot \rightarrow Development of the complete gradiometer 2 axes
- Definition of the architecture of the stabilized platform (in progress)
 - Design (mechanical, electronics) (done)
 - Control laws
 - · Validation of the performance
- Manufacturing and integration of the stabilized platform
- Test of the platform with 1 axis gradiometer (axis per axis)
 - · Using of an internal bench to simulate the real flight (hexapod)
 - · Confirmation of the global concept and the performance of the assembly
- Manufacturing of the 2 axis gradiometer
- Test of the complete configuration of the gradiometer 2 axes
 - Using of an internal bench to simulate the real flight (hexapod)
 - · Confirmation of the global concept and the performance of the assembly
 - · Real flight to realized first measurements

Future possibility evolution 1/2 Full tensor Gradiometer

Future possibility evolution 2/2 Cold atoms / electrostatic hybridization

Coupling Cold Atoms Interferometry GIBON Gradiometer along the vertical axis

→ providing Vzz gravity gradient and Gz absolute gravity magnitude

With Electrostatic GREMLIT Gradiometer along the horizontal axes

→ providing Full Tensor gravity gradiometer

Could permit to combine very high resolution electrostatic instrument measurements with very stable and absolute cold atoms interferometer measurement

Merci pour votre attention

