GREMLIT
Gradiomètre électrostatique planaire et sa plateforme contrôlée dédiés pour la géodésie aérienne

CNFG2 2016, Brest, 16/11/2016
Françoise Liorzou, Bernard Foulon, Bruno Christophe
Vincent Lebat - vincent.lebat@onera.fr
ONERA, world leader in ultra-sensitive space accelerometer

Accelerometers for geodesy
- JPL / Germany – GRACE-FO – Launch scheduled in 2017
- ESA – GOCE – 2009 – 10^{-12} m/s2/Hz$^{1/2}$
- JPL / DLR – GRACE – 2002 – 10^{-10} m/s2/Hz$^{1/2}$
- CNES / DLR – CHAMP – 2000 – 10^{-9} m/s2/Hz$^{1/2}$

Future missions 2020 - 2030
- Geodesy NGGM (ESA) – GRACE-2 (NASA)

Accelerometer for fundamental physics
- CNES / ONERA – Microscope – 2016 – 10^{-12} m/s2/Hz$^{1/2}$

Accelerometer for microgravity
- NASA – Missions Microgravity Space Laboratory-1 – April & July 1997

CACTUS Accelerometre – 1975 – 10^{-8} m/s2/Hz$^{1/2}$
Improvement of geoid

LAGEOS-GEOS3

CHAMP

DLR/CNES

GRACE

NASA/DLR

GOCE

ESA

Free air gravity anomalies of South America (mGal)

1979

2000

2007

2011

GEM9

Lerch FJ et al. 1979

GRIM 5s

Biancale R et al., 2000

GGM03s

Tapley et al 2007

GOCE TIM4

Pail et al 2011
GRADIO inheritance: drag compensation + gradiometer

GOCE - Gradiometer (EGG) with 6 Accelerometers

\[V_{\alpha\beta} = \frac{\partial}{\partial \beta} g^\alpha_u = \frac{\partial^2}{\partial \alpha \beta} U \]

Transvers differential acceleration
⇒ Angular acceleration
⇒ Angular speed (by integrated)

Commun mode acceleration “In line”
⇒ Externe integration at CoG

Differential acceleration “In line”
⇒ Measurement of Gravity Gradient
(after removing of angular acceleration)

The 3 axes of the GOCE gradiometer allow the simultaneous measurement of 6 independent but complementary components of the gravity field. Shown here are global maps of residual gradients referring to an ellipsoidal model of the Earth. 1 E (Eotvos) = 10⁻⁹ s²

©ESA
Needs for coastal areas?
Knowledge of the gravity field and geoid in coastal areas is necessary for:
- current circulation from altimetry
- exploitation of natural resources
- passive navigation

Gradiometer versus Gravimeter?
- Increase in spatial resolution
- High resolution data
- Prospecting and imaging where seismic methods are difficult to operate

Example of gradiometric data for mining exploration

Gravity measurements vs gradiometry measurements

GREMLIT (« GRadiomètre Electrostatique pour Mesures en zone LITtorale »)
- Airborne gravity gradiometer instrument to cover land/sea transition areas with uniform precision, and suitable spatial resolution (10 km scale)

→ Onera internal Project founding
Main principle of the GREMLIT instrument

- 4 planar accelerometers on a square configuration
 - Vertical axis levitation (max acc 10 m/s² ± 10)
 Planar configuration especially well suited to sustain the proof-mass levitation in the Earth’s gravity field
 - Horizontal axes linearity – sensitive axes (max acc 10⁻⁴ m/s²)
 Intrinsic linearity of position sensing and electrostatic actuation, which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth
 - Compactness
 Design with reduced level arms ensures excellent dimensional stability, good thermal homogeneity

The GREMLIT instrument is taking advantage of GOCE return of experience and of technologies, formerly developed by ONERA for the GRACE and GOCE space instruments

\[
\Gamma_{xx}(O) = \frac{1}{2} \left(\frac{a_x(O_3) - a_x(O_4)}{L} + \frac{a_x(O_2) - a_x(O_1)}{L} \right)
\]

\[
\Gamma_{yy}(O) = \frac{1}{2} \left(\frac{a_y(O_1) - a_y(O_4)}{L} + \frac{a_y(O_2) - a_y(O_3)}{L} \right)
\]

\[
\Gamma_{xy}(O) = \frac{1}{2} \left(\frac{a_y(O_3) - a_y(O_4)}{L} + \frac{a_y(O_2) - a_y(O_1)}{L} \right)
\]

\[
\Gamma_{yx}(O) = \frac{1}{2} \left(\frac{a_x(O_1) - a_x(O_4)}{L} + \frac{a_x(O_2) - a_x(O_3)}{L} \right)
\]

- Mass : 13.6 kg
- Volume : 355 × 355 × 238 mm
- Power : 15 W
Stabilized platform is necessary

- Stabilized platform is essential
 - To not saturate the sensitive axes of the instrument (10^-4 m/s^2) due to the flight perturbation
 - Orientation of the vector acceleration normal to the vertical axis of the instrument (10 m/s^2)
 - To achieve the global performance
 - High accuracy of the equipment on the platform (Gyro, instrument orientation wrt IMU), necessary for the global measurement

\[
\sigma_{\text{acc}_x} = 0.1 > 10^{-4} \text{ m.s}^{-2}
\]

\[
\sigma_{\theta} = 0.02 \text{ rad } \sigma_{\phi} = 0.005 \text{ rad}
\]

- GREMLIT Measurement
- Gyrometer on the platform
- \(V_{zz} \) is not measured but deducted from the null trace property of the gradient gravity tensor
- The orientation of the platform is controlled with the common mode of GREMLIT (1st order of magnitude) \(\Gamma = V - \dot{\Omega} - \Omega \cdot \Omega \)
Planar Gradiometer with 4 masses
Noise < 1 Eötvös in [0.001-0.3 Hz] MBW
Gyros with 0.003°/s bias and white noise of 0.02°/h/Hz$^{1/2}$
Platform orientation wrt carrier IMU with bias of 0.05° and white noise of 0.1°/Hz$^{1/2}$

Carrier: Fokker 27 from IGN flying at 500 m altitude and at 300 km speed
Area: Golf du Lion
0.25 Hz sampling frequency (333 m along track)
61 N-S lines with 2 km spacing
534 x 61 grid = 32574 points during 36 hours of flight
Performance evaluation: simulation results

Error of the horizontal gravitational gradients after gyro biases calibration by an ordinary least squares regression over the full time series

<table>
<thead>
<tr>
<th></th>
<th>in instrumental frame</th>
<th>in geodetic frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>δV_{xx}</td>
<td>1.103</td>
<td>2.7</td>
</tr>
<tr>
<td>δV_{xy}</td>
<td>0.84</td>
<td>1.9</td>
</tr>
<tr>
<td>δV_{yy}</td>
<td>1.86</td>
<td>2.57</td>
</tr>
<tr>
<td>δV_{zz}</td>
<td>2.28</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Correlation matrix of the errors of the 3 gradients

\[
\begin{bmatrix}
\delta V_{xx} & \delta V_{xy} & \delta V_{yy} \\
\delta V_{xy} & 1 & -0.013 \\
\delta V_{yy} & 0.126 & 0.154
\end{bmatrix}
\]

\[
\begin{bmatrix}
\Delta V_{xx} & \Delta V_{xy} & \Delta V_{yy} \\
\Delta V_{xx} & 1 & 0.067 \\
\Delta V_{xy} & 0.043 & 1
\end{bmatrix}
\]
Design of the stabilized platform

- Rotation controlled with high resolution linear actuator (0.1 μm) with handle, to reach the target resolution for the angle of 10^{-6} rad ($<10^{-5}$ rad are needed in regard of the max acc 10^{-4} m/s2)
- High resolution bearing
- Specific design to suppress clearance in the mechanic connections
- 3 gyrometers $< 10^{-5}$ rad.s$^{-1}$
- The orientation of the platform is controlled directly with the common mode of GREMLIT

 Thermomechanical stability of the platform is not a blocking point

 Nominal effort of the actuator is over of the needs, to not be limited by mechanical frictions (hysteresis)

- Measurement of the orientation of the platform with interferometer directly on the instrument (position between GREMLIT and IMU)
- First simple controlled laws simulated show the nice behavior of the platform

Simulation - Real angle of the platform
Progress of the Gradiometer development 1/2

• 1st Internal Project founding from 2012 to 2015
 • Confirmation of the feasibility and performance of the planar gradiometer
 • PhD grant from ONERA (2015)
 • Development of a single axis gradiometer
 • To demonstrate the viability of the measurement
 • All parts are manufactured, the integration is scheduled in October 2016
 • First tests are scheduled before the end of 2016 (initially scheduled in 2015, but delayed due to the availability of internal specific manufacturing bench)
• Study of the feasibility of the stabilized platform, essential to achieve the performance
 • Confirmation of the feasibility to achieve the performance of the gradiometer

1 axis gradiometer
Simple 1 axis platform
Progress of the Gradiometer development 2/2

• 2nd Internal Project founding from 2016 to 2018
 • Development of the complete gradiometer 2 axes
 • Definition of the architecture of the stabilized platform (in progress)
 • Design (mechanical, electronics) (done)
 • Control laws
 • Validation of the performance
• Manufacturing and integration of the stabilized platform
• Test of the platform with 1 axis gradiometer (axis per axis)
 • Using of an internal bench to simulate the real flight (hexapod)
 • Confirmation of the global concept and the performance of the assembly
• Manufacturing of the 2 axis gradiometer
• Test of the complete configuration of the gradiometer 2 axes
 • Using of an internal bench to simulate the real flight (hexapod)
 • Confirmation of the global concept and the performance of the assembly
 • Real flight to realized first measurements
Future possibility evolution 1/2
Full tensor Gradiometer

\[
\begin{bmatrix}
\frac{\partial a_x}{\partial x} & \frac{\partial a_x}{\partial y} & \frac{\partial a_x}{\partial z} \\
\frac{\partial a_y}{\partial x} & \frac{\partial a_y}{\partial y} & \frac{\partial a_y}{\partial z} \\
\frac{\partial a_z}{\partial x} & \frac{\partial a_z}{\partial y} & \frac{\partial a_z}{\partial z}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial^2 V}{\partial x^2} & \frac{\partial^2 V}{\partial x \partial y} & \frac{\partial^2 V}{\partial x \partial z} \\
\frac{\partial^2 V}{\partial y \partial x} & \frac{\partial^2 V}{\partial y^2} & \frac{\partial^2 V}{\partial y \partial z} \\
\frac{\partial^2 V}{\partial z \partial x} & \frac{\partial^2 V}{\partial z \partial y} & \frac{\partial^2 V}{\partial z^2}
\end{bmatrix}
= \begin{bmatrix}
0 & -\dot{\omega}_z & \dot{\omega}_y \\
\dot{\omega}_z & 0 & -\dot{\omega}_x \\
-\dot{\omega}_y & \dot{\omega}_x & 0
\end{bmatrix}
\]

6 acceleration gradients
+ 2 angular rate components
+ null trace property
Coupling Cold Atoms Interferometry GIBON Gradiometer along the vertical axis
→ providing V_{zz} gravity gradient and G_z absolute gravity magnitude

With Electrostatic GREMLIT Gradiometer along the horizontal axes
→ providing Full Tensor gravity gradiometer

Could permit to combine very high resolution electrostatic instrument measurements with very stable and absolute cold atoms interferometer measurement
Merci pour votre attention