Colloque Géodésie et Géophysique Marine

Océan, Atmosphère, Géodynamique, méthodes d'observations

14 - 16 novembre 2016

ENSTA-Bretagne - Brest

La mission d'expérimentation du système de gravimétrie mobile sous-marine **GraviMob**

Clément Roussel, Jérôme Verdun, Marcia Maïa, José Cali

GraviMob

Système de Gravimétrie Mobile

capteur accélérométrique

véhicule autonome sous-marin

Objectif

La mesure **dynamique** du **vecteur** accélération de pesanteur

(précision ~ 1 mGal = 0.00001 m/s²)

Plan

1. La mesure dynamique et vectorielle du champ Principe

Équation d'observation & filtre de Kalman

2. Instrumentation

Le capteur accélérométrique

Le véhicule porteur

3. La mission d'expérimentation

Profils de référence du SHOM

Résultats

4. Conclusion

La mesure **statique** et vectorielle du champ de pesanteur

Triade accélérométrique

immobile

La mesure **dynamique** et vectorielle du champ de pesanteur

$$\longrightarrow X \neq$$

x, y, z: axes sensibles a: acceleration specifique g: acceleration de pesanteur \ddot{X} : acceleration du porteur

masse d'épreuve

$$g=\ddot{X}-a$$

Triade accélérométrique

en mouvement

Équation d'observation

Équation d'observation

 $\lambda:$ longitude $\varphi:$ latitude h: hauteur $\delta:$ cap $\chi:$ tangage $\eta:$ roulis

 $\sigma_{\lambda} = 5.07 \times 10^{-4} \text{ deg} (\approx 2 \text{ m})^{-4} \sigma_{\varphi} = 2.25 \times 10^{-4} \text{ deg} (\approx 2 \text{ m})^{-4} \sigma_{h} = \sigma_{\delta} = 0.05 \text{ deg} \quad \sigma_{\chi} = 0.005 \text{ deg} \quad \sigma_{\eta} = 0.005 \text{ deg}$ $\sigma_{a} = 1 \text{ mGal}$

Instrumentation

Le capteur accélérométrique

 $\longmapsto (a_x \quad a_y \quad a_z)^T$

triades accélérométriques

sphère étanche

Instrumentation

Le véhicule autonome sous-marin (AUV)

capteur accélérométrique

centrale inertielle

17 au 25 mars 2016 - Navire L'EUROPE de l'IFREMER

Anomalies gravimétriques de surface du SHOM

zone ouest

zone est

Résumé des profils navigués

date	\mathbf{n}° de profil	nom du profil	mode de navigation	distance parcourue [km]
18 mars 2016	1	profil 910 - S2011-065_TRANSLOT15	immersion constante (1900 m)	7
	2			8
	3		immersion constante (1800 m)	8
19 mars 2016	4		- suivi de topo (100 m)	7.5
	5			7.5
	6			8
20 mars 2016	7	profil 910 - S2006-076_TRANSIT		8.5
	8		immersion constante (1900 m)	9
	9			9
	10		immersion constante (1850 m)	3
22 mars 2016	11	profil 21-1 - E2005-010_ESS-TR-HR	suivi de topo (100 m)	7
	12			7
	13		immersion constante (600 m)	6
	14			3
23 mars 2016	15	profil 20-2 - E2005-010_ESS-TR-HR	suivi de topo (85 m)	7
	16			7.5
	17		immersion constante (100 m)	8
	18			8.5
	19		immersion constante (80 m)	7.5
	20			8
24 mars 2016	21	profil 20-1 - E2005-010_ESS-TR-HR	suivi de topo (100 m)	4
	22			4
	23		immersion constante (100 m)	4
	24			4
	25		immersion constante (80 m)	4
	26			4

Stabilité en température

→ assurée par l'environnement naturel

Convergence du filtre de Kalman Unscented

erreur formelle donnée par la matrice de covariances $\ P_k$ →

Retrait d'un champ normal (Somigliana)

$$\gamma = rac{a \gamma_e \cos^2 arphi + b \gamma_p \sin^2 arphi}{\sqrt{a^2 \cos^2 arphi + b^2 \sin^2 arphi}}$$

Comparaison des tendances (ordre 2)

Résidus

Perspectives

Prolongement vers le haut

$$F(u,v,0) = F(u,v,-h) imes e^{(-h imes \sqrt{u^2+v^2})}$$
 of the carte 2D de l'anomalie

Estimation d'un modèle de masses ponctuelles

Conclusion

- Résultats **encourageants**
- Voies d'amélioration :
 - montage électrique / géométrique du capteur
 - calibration du capteur dans l'AUV
 - température de calibration / de levé

