

Le système de référence terrestre, une histoire de satellites

Richard Biancale CNES/GRGS

Géodésie et Géophysique Marine, 14-16 novembre 2016, ENSTA Bretagne, Brest

The beginning

The prime meridian on English maps was defined at the Meridian of Royal Observatory of Greenwich set by Sir George Airy in 1851 at the location of the Airy Transit Circle.

In October, 1884, the Meridian of Greenwich widely used in shipping - was chosen as prime official meridian at the "International Meridian Conference" held in Washington through the adoption of Greenwich Mean Time as Universal Time.

However France abstained from voting and French maps continued to use the Paris Meridian during a few decades.

Longitude is virtually described on the surface of the Earth by meridians, positive eastward; latitude is described by parallels, positive northward.

The pre-satellite era

Horizontal control network of the United States, 1931. Developing a network of areas based on manual surveys using triangulation was a precursor to today's modern National Spatial Reference System.

State of the triangulation in Europe, 1911, Verhandlungen der 17. Allgemeinen Conferenz der Internationalen Erdmessung, Berlin 1914

The satellite era

In January 1966, a **World Geodetic System Committee** composed of representatives from the United States Army, Navy and Air Force was charged with developing an improved WGS, needed to satisfy mapping, charting and geodetic requirements. Additional surface gravity observations, results from the extension of triangulation and trilateration networks, and large amounts of Doppler and optical satellite data (WGS66, WGS72) had become available since the development of WGS 60.

The **World Geodetic System WGS84** (revised in 2004) of the US Department of Defence is the reference system used le for the **Global Positioning System (GPS)**.

The zero meridian of the WGS-84 is 102.5 m east of the historic Meridian of Greenwich. It is geocentric and globally consistent to ± 1 m with the realizations of the International Terrestrial Reference System (ITRS) of the International Earth Rotation and Reference Systems Service (IERS).

The international terrestrial reference frame (ITRF)

BTS84-87: yearly TRF precursors worked out in the framework of BIH (Boucher & Altamimi, 1985) from VLBI, SLR, LLR, and Doppler/TRANSIT data

1987: creation of IERS (International Earth rotation - and reference systems - service)

ITRF88-89 : positions of ~100 sites. Velocities from AMO2 tectonic model (Minster & Jordan, 1978)

ITRF91-92-93: GPS introduced; position aligned on EOP/IERS, velocities estimated and aligned to NNR-NUVEL-1 (Argus & al., 1991)

ITRF94: DORIS introduced; use of variance matrices of coordinate series

ITRF96, ITRF1997, ITRF2000 (~500 sites)

1997: first international celestial reference frame (ICRF)

ITRF2005: jointly determined time series of TRF and EOP

ITRF2008: merging normal equations instead of time series

2009: ICRF2

ITRF2014: last realization of positions + velocities of ~1500 stations over 1980-2014; adjustment of periodical annual and semi-annual terms and post-seismic effects ⁵

Review of techniques used and satellites

ITRF comparisons on SLR stations

Evolution of some ITRF realizations in terms of SLR station positions and velocities

Comparisons of station positions are more consistent when using ITRF2014 velocities. The global standard deviation on coordinate differences remains within 1 to 2 cm.

Velocity standard deviations improve by a factor of ~6 over 20 years (1994-2014) up to ~.6 mm/yr.

Transformation parameters wrt ITRF2014

TRF validity on the long term

Lageos and Lageos2 SLR residuals with ITRF2008 and ITRF2014 over the 2002-2016 period

Lageos-Lageos2 residuals tend to increase after 2010 with ITRF2008

Impact on altimetric applications

Radial orbit differences exhibit a degree 1 pattern with a 3 mm amplitude Zonal bias and peak differences reach .2 mm/yr at high latitudes

Lemoine et al., Status of POD for Altimeter Satellites at GSFC, OSTST, Nov. 2, 2016

ITRF2014 co-locations

• 1499 stations located in 975 sites

Altamimi et al., Review of IDS contribution to ITRF2014, OSTST, IDS workshop, Oct. 31,2016

Tie Discrepancies

• "Tie Discrepancies" means differences between terrestrial ties and space geodesy estimates

• Percentage of tie discrepancies

wrt GNSS :	< 5 mm	> 5 mm
– VLBI:	42 %	58 %
– SLR:	29 %	71 %
- DORIS:	23 %	77 %
DORIS – DORIS	34 %	66 %

GNSS – DORIS velocity agreements

As example, agreement between GNSS/IGS and DORIS/IDS velocities at Yarragadee (West Australia) from 1995 to 2016: ~1 mm/yr

Altamimi et al., Review of IDS contribution to ITRF2014, OSTST, IDS workshop, Oct. 31,2016

How to go further?

Estimated precision of the last ITRF2014 realization:

Improvement will go through better:

- Loading effect modeling
- Propagation delays
- Instrument bias determination
- Satellite eccentricity vectors
- Orbit modeling
- Time synchronization
- \rightarrow same platform

GGOS requirements for 2020:

- 1 mm position precision
- .1 mm/yr velocity precision

Table 2. WRMS Averages of Postfit Residuals, in mm, as Result of Three Stacking Tests: Standard Stacking (STD), Stacking With NTAL Applied, and Stacking Where the Annual and Semiannual Frequencies (FREQ2) Are Estimated With No NTAL Model Corrections Applied

Solution		East	North	Up		
	IVS/VLBI, Session-Wise Sampling					
STD		3.79	3.97	11.00		
NTAL	VLBI	3.75	3.93	10.81		
FREQ2		3.74	3.91	10.81		
		ILRS/SLR, V	Weekly Sampling			
STD		8.91	10.91	8.18		
NTAL	SLR	8.90	10.76	8.14		
FREQ2	FREQ2	8.83	10.54	8.03		
	IDS/DORIS, Weekly Sampling					
STD		13.34	10.21	11.84		
NTAL	DORIS	13.32	10.18	11.89		
FREQ2	FREQ2		13.17 9.90			
IGS/GNSS, Daily Sampling						
STD		1.90	1.89	5.61		
NTAL	GNSS	1.85	1.84	5.07		
FREQ2		1.74	1.71	5.04		

NTAL: non-tidal atmospheric loading *Altamimi et al., 2016*

Multi-technique mission projects

aiming at improving TRF to a precision of 1 mm and a stability of .1 mm/yr (GGOS requirements for 2020) and homogenizing TRF/CRF/EOP

GRASP

- NASA Earth Venture Mission-2 (2020)
- Payload: GNSS/SLR/VT (+ DORIS in TriG?)
- Orbit: 925 1400 km, 100.2 deg. (sun-synchronous)
- Submitted on December 4, 2015

E-GRASP/Eratosthenes

- ESA Earth Explorer-9 mission (2024)
- Payload: GNSS/DORIS/SLR/VT/T2L2 (+ µSTAR?)
- Orbit: 762 7472 km, 63.4 deg.
- Submitted on June 24, 2016

E-GRASP / Eratosthenes

European Geodetic Reference Antenna in Space / European Reference Antenna of Space Geodetic Techniques Enhancing Earth Science

Proposal for Earth Explorer Opportunity Mission EE-9

In Response to Call for Proposals for Earth Explorer Opportunity Mission EE-9 (ESA/EXPLORER/EE-9 November 2015) by the

E-GRA SP/Eratosthenes Team

June 2016

E-GRASP overview

• GRASP heritage

- proposal to NASA's Earth Venture mission-2 in September 2011 and December 2015

- Selection of CYGNSS in 2012 and ? in 2016

- ESA Framework
 - proposal to ESA's Earth Explorer Opportunity mission in June 2016
 - selection of 2 missions first in phase A (among 17) in December 2016
 - launch by VEGA-C around 2024
- Payload
 - as for GRASP (DORIS, GNSS, SLR, VLBI)
 - precise passive H-maser clock synchronized by T2L2
 - accelerometer ?
- Orbit optimization
 - "performance" eccentric orbit (762-7472 km)
 - "continuity" low orbit (GRASP: 925-1400 km)
- Science enhancing
 - Geodesy (Earth reference system and applications)
 - Physics

Unification of space and time references

Science concept of E-GRASP/Eratosthenes including the space geodetic techniques and the corresponding co-location concepts

Science Objectives

- Unification of reference frames and Earth rotation
- Geocenter and scale
- Long-wavelength gravity field
- Altimetry and sea level rise
- Determination of ice mass loss
- Geodynamics, geophysics, natural hazards
- Improvement in global positioning
- GNSS antenna phase center calibration
- Positioning of satellites
- **Relativistic physics**

Parameters to be retrieved

Classification	Туре	Parameter	VLBI	GNSS	SLR	DORIS	LLR	
common, global	Satellite orbits	GNSS orbits	(√)	\checkmark	\checkmark			
		LEO orbit	24.0	\checkmark	\checkmark	\checkmark		
		LEO clock		\checkmark	(√)	75		
		E-GRASP orbit	\checkmark	\checkmark	\checkmark	\checkmark		co-location in
		E-GRASP clock	\checkmark	\checkmark	\checkmark	\checkmark		space
	EOP	Pole coordinates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
		UT1	\checkmark					
		LOD (Length of Day)	()	\checkmark	\checkmark	\checkmark	\checkmark	
		Nutation	\checkmark					
		Nutation rates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	Gravity field	Earth's center of mass	5082	()	\checkmark	()		
		Low-degree coefficients		\checkmark	\checkmark	\checkmark	()	
	TRF	Scale	\checkmark	(√)	\checkmark	(√)	\checkmark	
common, local	Atmosphere	Ionospheric parameters	\checkmark	\checkmark	(√)	\checkmark	()	
		Tropospheric parameters	\checkmark	\checkmark		\checkmark		an logation or
	TRF	Station positions	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	co-location of
		Station velocities	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	ground
	Time & Frequency	Station clocks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
technique-specific	technique-specific CRF	Quasar positions	\bigvee					
		Moon orbit	40.05				\checkmark	
	Instrumental	GNSS clock		\checkmark				
		Range biases			\checkmark		\checkmark	

Orbits (continuity and performance scenarios)

	GRASP scenario	E-GRASP scenario
Perigee altitude	925 km	762 km
Apogee altitude	1400 km	7472 km
Inclination	100.2°	63.4°
Node velocity	.98 deg./day (SSO)	97 deg./day
Perigee velocity	-2.35 deg./day	Frozen at equator
Orbit period	109 mn	178 mn

Criterion	GRASP	E-GRASP
Multi-technique visibility (% of seven days)	36.3 %	79.3 %
Mutual visibility for VLBI (baseline ≥ 6500 km - % of seven days)	0.0 %	58.4 %
Number of passes per day for all stations	2	3
Mutual visibility for GPS (% of seven days)	100.0 %	99.4 %
Empty sectors over four weeks (mean value)	71.1 %	5.1 %
Total radiation dose over three years (with 1cm Al shielding)	5.9 krad	5.3 krad

VLBI-transmitter (JPL)

Key microwave circuitry in the VT is inherited from the GRAIL RSB (green shading) and the GRAIL TTS transmitter (blue shading). The antennas (no shading) are existing flight hardware available to E-GRASP.

58%: percentage of mutual visibility of E-GRASP over one week from at least two VLBI antennas, with a baseline greater than 6500 km.

GNSS (RUAG Space)

PODRIX is a multi-constellation (GPS & Galileo) multi-frequency (L1/E1, L2 and L5/E5a) GNSS receiver platform from RUAG Space GmbH which is currently under development to be qualified in 2016. PODRIX is a direct continuation of the RUAG Space GPSR-G2 legacy GPS-receivers for Precise Orbit determination (POD), which are used on many European missions such as SWARM, SENTINEL 1,2,3 A/B, EARTHCARE

Portions of E-GRASP orbits which can be tracked by GNSS, in red with the top antenna, in green with the nadir antenna. Identifier number of the visible space vehicles along the orbit with one zenith antenna over 12 hrs. A GNSS space vehicle is considered as visible in case the received carrier to noise ratio on L1/E1 exceeded the 27dBHz, which corresponds to the acquisition threshold of the RUAG GNSS receiver (credits RUAG).

DORIS (CNES)

- High precision CNES Doppler measurement system (accuracy < 0.3 mm/s)
- Up to 7 dual frequency channels
- Routine high precision measurement mode reached autonomously.
- Direct impact on next altimetric missions tracked with DORIS

SLR (GFZ) and T2L2 (OCA)

Ground Laser Station

Principle: for every laser pulse, the laser station measures the start epoch t_e and the return epoch t_r after reflection on the satellite retroreflectors. The Time Transfer by Laser Link (T2L2) payload records the arrival epoch on-board t_b 11 rings with a total of 245 cubes
radius of the array about 10 cm
because of different velocity
aberrations between apogee (30
μrad) and perigee (60 μrad) as
proposed by GFZ

Sub-system	Characteristics
Mass of unit A	0.5 kg
Mass of unit B	4 kg
Volume of unit A	50x50x100 mm ³
Volume of unit B	150x150x150 mm ³
Power consumption	30 W
Optical detection wavelength	532.1 nm
Detection Threshold	Single photon
Field of view @ perigee	28°
Photo detection Standard	20 ps RMS @ single
deviation	photon
Event timer Standard Deviation	1 ps RMS

T2L2 flight model (part B) designed for Jason-2 mission

Mini PHM (Leonardo-Finmeccanica)

Mini-PHM derives from PHM (Passive Hydrogen Maser) technology already in flight in the frame of Galileo Global Navigation System.

Leonardo-Finmeccanica

Specification	Mini-PHM
Output Frequency	10.00285741 MHz (fH/142)
Output Level	+ 7dBm (Main and Auxiliary outputs)
Frequency Drift (/Day)	≤ 1x10 ⁻¹⁴ after 1 week < 1x10 ¹⁵ after 30 days
Allan deviation (1s<т<10 ⁴ s)	< 1x10 ⁻¹² x т ^{-1/2} max < 7x10 ⁻¹³ x т ^{-1/2} typical
Freq. sensitivity to temperature	< 1 x10 ⁻¹⁵ /°C
Freq. sensitivity to Main Bus Voltage	≤ 3x10 ⁻¹⁵ /V
Dimensions	210 x 485 x 218 mm
Mass	12 Kg
Main Bus Voltage	$50V \pm 1V$
Power consumption (W)	≤ 54 W at -5°C baseplate ≤ 47 W at +10°C baseplate
Qualification Temp. Range	- 15°C to +20°C
Lifetime (MEO Orbit)	>12 years
Allan deviation (s)	
1	6.5x10 ⁻¹³
10	1.4x10 ⁻¹³
100	6.3x10 ⁻¹⁴
1000	2.2x10 ⁻¹⁴

Instruments characteristics and TRL

Unit	Manufac- turer	Volume [mm³]	Mass [kg]	Power [W]	Key Performance	Flight Heritage	TRL
Laser Retro- Reflector	GFZ / ASI / INFN	Ø 200, h 100	1	-	1 mm	PN-1A	7
GNSS receiver GNSS antenna	RUAG	280x240x81 Ø 200, h 87	3 .8	15	1 mm	Swarm, Sentinel, Earthcare	8
DORIS receiver DORIS antenna	TSA	388x366x173 Ø 160, h 427	18 2	22	.3 mm/s	Sentinel3, Jason	8
VLBI-Transmitter S-band antenna X-band antenna	JPL	190x210x60 100x100x6 Ø 44, h 200	3 .3 .4	10	1 mm	GRASP	6
T2L2	OCA	50x50x100 150x150x150	0.5 4.5	30	100 ps	Jason-2	4
OUS (with redundancy)	Leonardo/ Spectratime	210x485x218	24	≤ 56	10-14	Galileo	6
Σ			54.8	133			
Micro-STAR (optional)	ONERA		12	12	10 ⁻¹¹ m/s/√Hz	GRACE, GOCE	4

Mission architecture (Thales Alenia Space)

E-GRASP challenges and recommendations

- Improving the TRF precision by a unique system, integrating all space geodetic techniques on one platform, with orbit and calibration optimized, in order to meet the present-day science requirements. The TRF available today needs an improvement by a factor of 5, as a minimum (recent ITRF2014 results).
- The accuracy of the Terrestrial Reference Frame (TRF) impacts directly the orbit determination of altimetric satellites and land motion estimation at tide gauges and consequently the quantification of the sea level variations in space and time.
- More generally, global studies on the mass budget of the earth-oceanatmosphere system and on global tectonics require an accurate TRF.
- "Earth observations must become more precise. We require information about current trends at a scale measured in millimeters to detect changes of the Earth system with sufficient precision, to meet society's future needs", *Report of the UN expert committee on "Global Geospatial Information Management"*, 2014.

